
The Tools
This book is a cookbook of sorts, and this chapter covers the key ingre-

dients. The concepts and tools you’ll use in every chapter are intro-

duced here. There’s enough information on each tool to get you to the

point where you can make it say “Hello World!” Chances are you’ve

used some of the tools in this chapter before—or ones just like them.

Skip past the things you know and jump into learning the tools that are

new to you. You may want to explore some of the less-familiar tools

on your own to get a sense of what they can do. The projects in the

following chapters only scratch the surface of what’s possible for most

of these tools. References for further investigation

are provided.

1
MAKE: PROJECTS

Happy Feedback Machine by Tuan Anh T . Nguyen

The main pleasure of interacting with this piece comes from the feel of flipping the switches and turning the knobs.

The lights and sounds produced as a result are secondary, and most people who play with it remember how it feels

rather than its behavior.

2 MAKING THINGS TALK

It Starts with the Stuff You Touch
All of the objects that you’ll encounter in this book—tangible or intangible—will have

certain behaviors. Software objects will send and receive messages, store data, or both.

Physical objects will move, light up, or make noise. The first question to ask about any

object is: what does it do? The second is: how do I make it do what it’s supposed to do?

Or, more simply, what is its interface?

An object’s interface is made up of three elements. First,
there’s the physical interface. This is the stuff you touch—
such as knobs, switches, keys, and other sensors—that
react to your actions. The connectors that join objects
are also part of the physical interface. Every network of
objects begins and ends with a physical interface. Even
though some objects in a network (such as software
objects) have no physical interface, people construct
mental models of how a system works based on the
physical interface. A computer is much more than the
keyboard, mouse, and screen, but that’s what we think of it
as, because that’s what we see and touch. You can build all
kinds of wonderful functions into your system, but if those
functions aren’t apparent in the things people see, hear,
and touch, they will never be used. Remember the lesson
of the VCR clock that constantly blinks 12:00 because no
one can be bothered to learn how to set it? If the physical
interface isn’t good, the rest of the system suffers.

Second, there’s the software interface—the commands
that you send to the object to make it respond. In some
projects, you’ll invent your own software interface; in
others, you’ll rely on existing interfaces to do the work for
you. The best software interfaces have simple, consistent
functions that result in predictable outputs. Unfortunately,

not all software interfaces are as simple as you’d like them
to be, so be prepared to experiment a little to get some
software objects to do what you think they should do.
When you’re learning a new software interface, it helps
to approach it mentally in the same way you approach
a physical interface. Don’t try to use all the functions
at once; first, learn what each function does on its own.
You don’t learn to play the piano by starting with a Bach
fugue—you start one note at a time. Likewise, you don’t
learn a software interface by writing a full application with
it—you learn it one function at a time. There are many
projects in this book; if you find any of their software
functions confusing, write a simple program that demon-
strates just that function, then return to the project.

Finally, there’s the electrical interface—the pulses of electri-
cal energy sent from one device to another to be interpreted
as information. Unless you’re designing new objects or the
connections between them, you never have to deal with
this interface. When you’re designing new objects or the
networks that connect them, however, you have to under-
stand a few things about this interface, so that you know
how to match up objects that might have slight differences
in their electrical interfaces.
X

It’s About Pulses
In order to communicate with each other, objects use communications protocols.

A protocol is a series of mutually agreed-upon standards for communication between

two or more objects.

THE TOOLS 3

Serial protocols like RS-232, USB, and IEEE 1394 (also
known as FireWire and i.Link) connect computers to
printers, hard drives, keyboards, mice, and other periph-
eral devices. Network protocols like Ethernet and TCP/
IP connect multiple computers through network hubs,
routers, and switches. A communications protocol usually
defines the rate at which messages are exchanged, the
arrangement of data in the messages, and the grammar of
the exchange. If it’s a protocol for physical objects, it will
also specify the electrical characteristics, and sometimes
even the physical shape of the connectors. Protocols
don’t specify what happens between objects, however.
The commands to make an object do something rely on
protocols in the same way that clear instructions rely on
good grammar—you can’t give useful instructions if you
can’t form a good sentence.

One thing that all communications protocols have in
common—from the simplest chip-to-chip message to the
most complex network architecture—is this: it’s all about
pulses of energy. Digital devices exchange information

by sending timed pulses of energy across a shared con-
nection. The USB connection from your mouse to your
computer uses two wires for transmission and reception,
sending timed pulses of electrical energy across those
wires. Likewise, wired network connections are made up of
timed pulses of electrical energy sent down the wires. For
longer distances and higher bandwidth, the electrical wires
may be replaced with fiber optic cables , which carry timed
pulses of light. In cases where a physical connection is
inconvenient or impossible, the transmission can be sent
using pulses of radio energy between radio transceivers (a
transceiver is two-way radio, capable of transmitting and
receiving). The meaning of data pulses is independent of
the medium that’s carrying them. You can use the same
sequence of pulses whether you’re sending them across
wires, fiber optic cables, or radios. If you keep in mind that
all of the communication you’re dealing with starts with
a series of pulses—and that somewhere there’s a guide
explaining the sequence of those pulses—you can work
with any communication system you come across.
X

The second type of computer you’ll encounter in this book,
the microcontroller, has no physical interface that humans
can interact with directly. It’s just an electronic chip with
input and output pins that can send or receive electrical
pulses. Using a microcontroller is a three-step process:

1. You connect sensors to the inputs to convert physical
energy like motion, heat, and sound into electrical energy.

2. You attach motors, speakers, and other devices to the
outputs to convert electrical energy into physical action.

3. Finally, you write a program to determine how the input
changes affect the outputs.

In other words, the microcontroller’s physical interface is
whatever you make of it.

The third type of computer in this book, the network
server, is basically the same as a desktop computer—it
may even have a keyboard, screen, and mouse. Even
though it can do all the things you expect of a personal
computer, its primary function is to send and receive data
over a network. Most people don’t think of servers as
physical things because they only interact with them over
a network, using their local computers as physical inter-
faces to the server. A server’s most important interface for
most users’ purposes is its software interface.

Computers of All Shapes and Sizes
You’ll encounter at least four different types of computers in this book, grouped

according to their physical interfaces. The most familiar of these is the personal

computer. Whether it’s a desktop or a laptop, it’s got a keyboard, screen, and mouse,

and you probably use it just about every working day. These three elements—the

keyboard, the screen, and the mouse—make up its physical interface.

4 MAKING THINGS TALK

The fourth group of computers is a mixed bag: mobile
phones, music synthesizers, and motor controllers, to
name a few. Some of them will have fully developed
physical interfaces, some will have minimal physical inter-
faces but detailed software interfaces, and most will have
a little of both. Even though you don’t normally think of

these devices as computers, they are. When you think of
them as programmable objects with interfaces that you
can manipulate, it’s easier to figure out how they can all
communicate, regardless of their end function.
X

Good Habits
Networking objects is a bit like love. The fundamental problem in both is that when

you’re sending a message, you never really know whether the receiver understands

what you’re saying, and there are a thousand ways for your message to get lost or

garbled in transmission.

You may know how you feel but your partner doesn’t.
All he or she has to go on are the words you say and the
actions you take. Likewise, you may know exactly what
message your local computer is sending, how it’s sending
it, and what all the bits mean, but the remote computer
has no idea what they mean unless you program it to
understand them. All it has to go on are the bits it receives.
If you want reliable, clear communications (in love or net-
working), there are a few simple things you have to do:

•	 Listen more than you speak.
•	 Never assume that what you said is what they heard.
•	 Agree on how you’re going to say things in advance.
•	 Ask politely for clarification when messages aren’t clear.

Listen More Than You Speak
The best way to make a good first impression, and to main-
tain a good relationship, is to be a good listener. Listening
is more difficult than speaking. You can speak anytime you
want, but since you never know when the other person
is going to say something, you have to listen all the time.
In networking terms, this means you should write your
programs such that they’re listening for new messages most
of the time, and sending messages only when necessary.
It’s often easier to send out messages all the time rather
than figure out when it’s appropriate, but it can lead to all
kinds of problems. It usually doesn’t take a lot of work to
limit your sending, and the benefits far outweigh the costs.

Never Assume
What you say is not always what the other person hears.
Sometimes it’s a matter of misinterpretation, and other
times, you may not have been heard clearly. If you assume
that the message got through and continue on oblivi-
ously, you’re in for a world of hurt. Likewise, you may be
inclined to first work out all the logic of your system—and
all the steps of your messages before you start to connect
things—then build it, and finally test it all at once. Avoid
that temptation.

It’s good to plan the whole system out in advance, but
build it and test it in baby steps. Most of the errors that
occur when building these projects happen in the com-
munication between objects. Always send a quick “Hello
World!” message from one object to the others, and make
sure that the message got there intact before you proceed
to the more complex details. Keep that “Hello World!”
example on hand for testing when communication fails.

Getting the message wrong isn’t the only misstep you can
make. Most of the projects in this book involve building the
physical, software, and electrical elements of the interface.
One of the most common mistakes people make when
developing hybrid projects like these is to assume that
the problems are all in one place. Quite often, I’ve sweated
over a bug in the software transmission of a message,
only to find out later that the receiving device wasn’t even
connected, or wasn’t ready to receive messages. Don’t

THE TOOLS 5

assume that communication errors are in the element of
the system with which you’re most familiar. They’re most
often in the element with which you’re least familiar, and
therefore, are avoiding. When you can’t get a message
through, think about every link in the chain from sender
to receiver, and check every one. Then check the links you
overlooked.

Agree on How You Say Things
In good relationships, you develop a shared language
based on shared experience. You learn the best ways to
say things so that your partner will be most receptive,
and you develop shorthand for expressing things that you
repeat all the time. Good data communications also rely
on shared ways of saying things, or protocols. Sometimes
you make up a protocol for all the objects in your system,
and other times you have to rely on existing protocols.
If you’re working with a previously established protocol,
make sure you understand all the parts before you start
trying to interpret it. If you have the luxury of making
up your own protocol, make sure you’ve considered the
needs of both the sender and receiver when you define
it. For example, you might decide to use a protocol that’s
easy to program on your web server, but that turns out to
be impossible to handle on your microcontroller. A little
thought to the strengths and weaknesses on both sides of
the transmission, and a bit of compromise before you start
to build, will make things flow much more smoothly.

Ask Politely for Clarification
Messages get garbled in countless ways. Perhaps you hear
something that may not make much sense, but you act
on it, only to find out that your partner said something
entirely different from what you thought. It’s always best
to ask nicely for clarification to avoid making a stupid
mistake. Likewise, in network communications, it’s wise
to check that any messages you receive make sense.
When they don’t, ask for a repeat transmission. It’s also
wise to check, rather than assume, that a message was
sent. Saying nothing can be worse than saying something
wrong. Minor problems can become major when no one
speaks up to acknowledge that there’s an issue. The same
thing can occur in network communications. One device
may wait forever for a message from the other side, not
knowing, for example, that the remote device is unplugged.
When you don't receive a response, send another
message. Don’t resend it too often, and give the other
party time to reply. Acknowledging messages may seem
like a luxury, but it can save a whole lot of time and energy
when you’re building a complex system.
X

Tools
As you’ll be working with the physical, software, and electrical interfaces of objects,

you’ll need physical tools, software, and (computer) hardware.

Physical Tools
If you’ve worked with electronics or microcontrollers
before, chances are you have your own hand tools already.
Figure 1-1 shows the ones used most frequently in this
book. They’re common tools that can be obtained from
many vendors. A few are listed in Table 1-1.

In addition to hand tools, there are some common elec-
tronic components that you’ll use all the time. They’re
listed as well, with part numbers from the retailers
featured most frequently in this book. Not all retailers will
carry all parts, so there are many gaps in the table.

NOTE: You’ll find a number of component suppliers in this book. I

buy from different vendors depending on who’s got the best and

the least expensive version of each part. Sometimes it’s easier to

buy from a vendor that you know carries what you need, rather

than search through the massive catalog of a vendor who might

carry it for less. Feel free to substitute your favorite vendors. A list

of vendors can be found in the Appendix.

