
The task of building a robot is unlike any other in computer science. It’s a strange amalgamation
of computer, electrical, and mechanical engineering. Being able to program is great (and nec-
essary), but if you can’t get your program to interact with physical items like sensors and motors,
then your robot will forever be a virtual one. If your motors can’t move your rover without pulling
more current than your circuits can source, the rover will be immobile until you find a solution
—either different motors, a different circuit, or a lighter rover. And using a reed switch to de-
termine when your rover runs into a wall is a great idea, until you discover that the switch you
bought online can’t stand up to the force of a 20-pound rover hitting a wall at 10 miles per hour.
You need to learn to roll with the punches, fix what breaks, and—when possible—prevent it
from breaking in the first place.

Building a robot also requires knowing your limits, related to both your knowledge and your
materials. I really wanted to put a robotic gripper hand on this rover, and chances are I will
eventually, but I’m aware that it probably won’t happen without different tools and better
materials than those I can find at the corner hardware store. Likewise, the ion-drive engine is
going to have to wait a few years; in the meantime, electric car-seat motors will have to do. And
be prepared to know and accept when one of your designs is just wrong, and to go back and
redesign something. By following along in this book, hopefully you’ll be taking advantage of
my making the mistakes for you; rest assured that the rover design you see in this book is by
no means the original design I had in my head, though I am pretty happy with the results.

The flip side to knowing your limits, of course, is being willing to stretch those limits when you
think you can, and to be ready to think of unconventional ways to do things, especially when
you’re a backyard tinkerer—a Maker. PVC pipe, for example, is meant to be used for plumbing.
However, it also makes excellent shock-absorbing drive axles (see Chapter 7). Yes, I’m using
plumbing flex-hose to cover the guts of my robotic arm, and the rover’s wheels are pulled
straight off a Power Wheels vehicle. Sometimes you can experience great flashes of inspiration
just by wandering the aisles of your local hardware (or toy) store. Sometimes you can solve a
particularly knotty problem the same way.

1

Introduction 1



I like to call this robot a rover, as I tried to pattern it after NASA’s designs. Figure 1-1 shows
the general outline of the finished rover.

Figure 1-1. The rover

It’s not nearly as robust as NASA’s versions, of course, and you’ll notice that its four (not six)
wheels don’t sit on their own independent shock absorbers, but the design is a proven
one. And speaking of wheels: although I would very much like to program my own an-
thropomorphic android, such as C-3PO, it’s a sad fact that the Raspberry Pi’s computing
power is most likely not up to the task of controlling a bipedal droid. You may think it’s
nothing special, but as it happens, getting a robot to not only balance on two legs, but
also walk on them, is quite a challenge. The well-known ASIMO robot by Honda (Figure 1-2)
required many years and many millions of dollars to finally be able to walk on its own.

To balance on two feet, a robot’s internal sensors must constantly measure where the
robot’s center of gravity (COG) is, and then determine where the robot’s feet are, and then
check to see that the COG is over at least one of the robot’s feet, preferably over a line
between the robot’s feet, or at most, very slightly offset from that line (but not too far). If
the robot’s COG is too far to one side, the robot’s brain must send the command to flex the
leg on that side to tilt the robot ever so slightly in the other direction, bringing the COG to
a more stable location, without going too far in the other direction. And if the robot is
carrying something, all those values need to be recomputed on the fly.

2 Make a Raspberry Pi–Controlled Robot

Introduction



Figure 1-2. More than the Pi can handle

So there are several advantages to using wheels. First, not having to balance means that the
Pi’s computing power (and servo power) can be spared for other tasks, such as taking temper-

3Chapter 1

Introduction



ature samples or moving the robot arm. Second, depending on the type of wheels you
use, a wheeled vehicle can go all sorts of places that a bipedal robot can’t. And third, wheels
can also be cool—I refer you to R2-D2, the Mars Curiosity rover, and the Mars Exploration
rovers (Spirit and Opportunity) for examples of pretty cool wheeled robots. Figure 1-3
shows the Mars rovers.

Figure 1-3. Three bad-assed wheeled robots

To increase the coolness factor to monster-truck levels, I decided to go with oversized
wheels; it’s common knowledge that almost any wheeled vehicle looks seven and a half
times better with bigger tires. Figures 1-4 and 1-5 prove my point.

Figure 1-4. Small tires: not so awesome

4 Make a Raspberry Pi–Controlled Robot

Introduction



Figure 1-5. Big tires: AWESOME!

This brings up more design challenges, however. Larger wheels tend to be heavier, and it’s
always—always—a good idea to keep your robot or rover as light as possible. A heavy robot is
a power-hungry robot, and batteries and engines are heavy enough to begin with. Large wheels
also have greater rolling resistance, though rolling resistance comes more into play at higher
speeds and higher efficiencies than this rover is likely to experience. My solution: I used the
wheels from a Power Wheels vehicle. They’re large and impressive, but because they’re made
of plastic, they hardly weigh anything. Of course, that led to further challenges, such as mount-
ing those wheels to a non–Power Wheels axle, but as you’ll see in Chapter 7, those issues were
solved as well, often with a combination of screws, nuts, bolts, and generous applications of
epoxy and cold-weld.

The final design, assuming you follow these step-by-step instructions, can be seen in Figure 1-6.

5Chapter 1

Introduction




