PART |
The Basics

This first section of the book covers the material you'll need to know for most AVR projects.
These chapters build directly on one another, and you're probably going to want to work
through them in order. Chapter 1 starts out with an overview of the chip and what it can do for
you, then we move on to doing it.

The first task is to learn how to write and compile code for the AVR, and then get that code
written into the chip’s flash program memory. By the end of Chapter 2, you'll have an LED
blinking back at you from your breadboard. Chapter 3 introduces the topic of digital output in
general, and we'll build a POV illusion gadget that you can program yourself. Chapter 4 is an
introduction to bit-level manipulations using bitwise logic functions. Though not a particularly
sexy chapter, it's fundamentally important.

Chapter 5 connects your AVR to the outside world: in particular, your desktop computer. Bridg-
ing the computer world and the real world is where microcontrollers excel, and the serial port
is the easiest way to do so. To show off a little, we'll make an organ that you can play from your
desktop’s keyboard.

Chapter 6 introduces you to the world of button pressing. We'll make a standalone AVR music
box where you control the tempo and length of the notes that are preprogrammed into the
chip and leverage the serial connection from the previous chapter to make a dedicated web
page-launching button.

Chapter 7 brings the outside world of analog voltages into your AVR, by introducing the built-
inanalog-to-digital converter (ADC) hardware. Knowing how to use the ADC opens up the world
of sensors. We'll build a light meter, expand on this to build a knob-controllable night light, and
finally combine the ADC with serial output and your desktop to implement a simple and slow,
but still incredibly useful, oscilloscope.






Thefirstquestion to ponderis what, exactly, isa microcontroller? Clearlyit'sa chunk
of silicon, but what'’s inside of it?

What Is a Microcontroller? The Big Picture

Rhetorical questions aside, it's well worth getting the big-picture overview before
we dive headfirst into flipping bits, flashing program memory, and beyond.

A Computer on a Chip...

Microcontrollers are often defined as being complete computers on a single chip,
and this is certainly true.

At their core, microcontrollers have a processor that is similar to the CPU on your
computer. The processor reads instructions from a memory space (in flash memory
rather than on a hard drive), sends math off to an arithmetic logic unit (instead of
a math coprocessor), and stores variables in RAM while your program is running.

Many of the chips have dedicated serial hardware that enables them to commu-
nicate to the outside world. For instance, you'll be able to send and receive data
from your desktop computer in Chapter 5. OK, it's not gigabit Ethernet, but your
microcontroller won't have to live in isolation.

Like any computer, you have the option of programming the microcontroller using
a variety of languages. Here we use C, and if you're a software type, the code ex-
amples you see in this book will be an easy read. It'll contain things like for loops
and assigning variables. If you're used to the design-code-compile-run-debug cy-
cle, or you've got your favorite IDE, you'll feel at home with the software side of
things.

So on one hand, microcontrollers are just tiny little computers on a chip.



What Is a Microcontroller? The Big Picture

4

...But a Very Small Computer

Onthe other hand, the AVR microcontrollers are tiny little computers on a chip, and
their small scale makes development for microcontrollers substantially different
from development for “normal” computers.

One thing to notice is that the chips in the AVR product line, from ATtiny15 to
ATmega328, include the flash program memory space in kilobytes in the chip’s
name. Yeah, you read that right: we're talking about 1 KB to 32 KB of room for your
code. Because of this limited program memory space, the scope of your program
running on a single chip is necessarily smaller than, for example, that Java enter-
prise banking system you work on in your day job.

Microcontrollers have limited RAM as well. The ATmega168 chips that we'll be fo-
cusing on here have a nice, round 1 KB. Although it’s entirely possible to interface
with external RAM to get around this limitation, most of the time, the limited
working memory is just something you'll have to live with. On the other hand, 1,024
bytes isn't that limiting most of the time. (How many things do you need 1,024 of?)
The typical microcontroller application takes an input data stream, processes it
relatively quickly, and shuttles it along as soon as possible with comparatively little
buffering.

And while we're talking specs, the CPU core clocks of the AVR microprocessors run
from 1 to 20 megahertz (when used with an external crystal), rather than the
handful of gigahertz you're probably used to. Even with the AVR’s RISC design,
which gets close to one instruction per cycle, the raw processing speed of a mi-
crocontroller doesn’t hold a candle to a modern PC. (On the other hand, you'll be
surprised how much you can do with a few million operations per second.)

Finally, the AVR family of microcontrollers have 8-bit CPUs without a floating-point
math coprocessor inside. This means that most of the math and computation you
do will involve 8-bit or 16-bit numbers. You can use 32-bit integers, but higher
precision comes with a slight speed penalty. There is a floating-point math library
for the AVRs, but it eats up a large chunk of program memory, so you'll often end
up redesigning your software to use integers cleverly. (On the other hand, when
you have memory sitting unused, go for it if it helps make your life easier.)

Because the computer that’s inside the microcontrollers is truly micro, some more
of the niceties that you're probably used to on your PC aren’t present. For instance,
you'll find no built-in video, sound, keyboard, mouse, or hard drives. There’s no
operating system, which means that there’s no built-in provision for multitasking.
In Part II, I'll show you how the built-in hardware interrupt, clock, and timer pe-
ripherals help you get around this limitation.

On the other hand, microcontrollers have a range of hardware peripherals built in
that make many of the common jobs much easier. For instance, the built-in hard-
ware serial interface means you don’t have to write serial drivers, but merely put

Make: AVR Programming



Hardware: The Big Picture

your byte in the right place and wait for it to get transmitted. Built-in pulse-width
modulation hardware allows you to just write a byte in memory and then the AVR
will toggle a voltage output accordingly with fractional microsecond precision.

What Can Microcontrollers Do?

Consumer examples of microcontrollersinclude the brains behind your microwave
oven that detect your fingers pressing on the digit buttons, turn that input into a
series of programmed on-times, and display it all on a screen for you to read. The
microcontroller in your universal remote control translates your key presses into a
precise series of pulses for an infrared LED that tells the microcontroller inside your
television to change the channel or increase the volume.

On the other end of the cost spectrum, microcontrollers also run braking and ac-
celeration code in streetcars in Norway and provide part of the brains for satellites.

Hacker projects that use microcontrollers basically span everything that’s cool
these days, from the RepRap motor-control and planning electronics, to quadcop-
ter inertial management units, to high-altitude balloon data-loggers; Twittering
toilets and small-scale robotics; controls for MAME cabinets and disk-drive emu-
lators for C64s. If you're reading this book, you've probably got a couple applica-
tions in mind already; and if you don't, it'll only take one look at Hack-a-day or the
Make blog to get your creative juices flowing.

(If you want to know why you'd ever want to get your toilet to tweet each time you
flush, I'm afraid | can’t help you. I'm just hear to show you how.)

Hardware: The Big Picture

So a microcontroller is a self-contained, but very limited computer—halfway be-
tween a computer and a component. I've been talking a lot about the computer
side. What about the AVR chips as components? Where can you hook stuff up? And
how exactly do they do all that they do? Figure 1-1 lays out all of the chip’s pins
along with the mnemonics that describe their main functions.

If you're coming at this from no background, you're probably wondering how a
microcontroller does all this marvellous stuff. The short answer is by reading vol-
tagesapplied toits various pins or by setting up output voltages to these very same
pins. Blinking an LED is an obvious example—when the output voltage is high, the
LED lights up, and when the voltage is low, it doesn’t. More complicated examples
include the serial ports that communicate numbers by encoding them in binary,
with high voltage standing in for a 1 and low voltage standing in for a 0, and
changing the voltage on the pins over time to convey arbitrary messages.

Chapter 1: Introduction 5



